7 AD-A142 250  MORPHOLOGICAL SKELETON REPRESENTATION AND CODING OF 1/
BINARY IMAGES({U) GEORGIA INST OF TECH ATLANTA SCHOOL OF
. ELECTRICAL ENGINEERING P A MARAGOS ET AL. 1984
UNCLASSIFIED AFOSR-TR-84-0347 DAAGR29-81-K-0024 F/G 9/2 NL

END
7-+n

oTIC




232
“EFr
m—m_m_m_umm._u.m “.AM%__

. =
=

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A




REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release; distribution
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE unlimited.
4. PERFORMING ORGANIZATION REPORT NUMBERI(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFOSR-TR- 84 -084%

6s. NAME OF PERFORMING ORGANIZATION rb. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Georgia Institute of (It applicable)
Technology

6c. ADDRESS (City, State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)
Directorate of Mathematical & Information
Sciences, Bolling AFB DC 20332

Air Force Office of Scientific Research

School of Electrical Engineering
Atlanta GA 30332

8s. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL |9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER i
ORGANIZATION (1f applicabie) ‘
AFOSR NM DAAG29-81-K-0024
8c. ADD‘RESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.
PROGRAM PROJECT TASK WORK UNIT
Bolling AFB DC 20332 ELEMENT NO. NO. NO.

LIIOLE | 2804 | ad

11. TITLE (Inciude Security Classification)

MORRUQLOGICAL [MAGES
12. PERSONAL AUTHOR(S)

Petros A. Maragos and Ronald W. Schafer
13a. TYPE OF REPORT 136. TIME COVERED 14. OATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT
Technical FROM 10 1984 4

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS rContinue on reverse if necessory and identify by block number)

flELo_ enour 2R A pages /-4 1984

19. ABSTRACT /Continue on reverse if necessaory and identify by block number;

b This paper presents a preliminary study on using Mathematical Morphology to represent and
code a binary or a grey-tone image by parts of its skeleton, a thinned version of the
image. An image can be uniquely decomposed into skeleton components, and then reconstruc-—
ted by dilating these components. Since, for a certain category of imagery, the skeleton
components possess a lower entropy than the original image, a run-length or entropy coding
scheme can be used to achieve representation or transmission of the image at a lower infor-

mation rate than originally required. N
K WAL
/ RN N

/ Bt ow
P 3
- .

/

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT 2). ABSTRACT SECURITY CLASSI

uncLassiFig0/uNLiMmTED B same as meT. T oTic usens O UNCL,.CCITIED

220. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22¢. OFFICE SYMBOL
tinciude Area Code)

Dr. Joseph Bram (202) 767~ 4939 NM




Signal Processing.

AFOSR-TR- 84 -034%3

ADAZ 2 50

Petros A. Maragos and Ronald M. Schafer

School of Electrical Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332

This paper presents a preliminary study on
using Mathematical Norphology to represent and
code a binary or a grey-tone image by parts of
its skeleton, a thinned version of the image. An
image can be uniquely decomposed into skeleton
components, and then reconstructed by dilating
these components. Since, for a certain category
of imagery, the skeleton components possess a
lower entropy than the original image, a run
length or entropy coding scheme can be used to
achieve representation or transaission of the
image at a lower informatjon rate than originally
required.

INTRODUCTION TO MASMEMATICAL MORPEOLOGY

Mathematical Norphology, &s a sethod for
inage analysis, was introduced by Matheron and
Serra [1). 1Its purpose is the guantitative des-
cription of geometrical structures. To extract
information from an image oObject, Morphology
“hits" it first with a “structuring element.®
The interaction with the structuring element
transforms the object and reduces it to a sort of
caricature which is more expressive than the
actual initial phenomenon. ’

The most fundamental morphological transfor~
mations are erosion and dilation: Let X denote a
set in the continuous or digital 2-D Buclidean
space representing a binary analog or digital
image object. Then X° (complement of X) denotes
the image background. Let B be the structuring
element, which is another set with & simple geo~
metrical shape, and denote by B, the translate of
B whose center is situated at the point x.
Rrosion of X by B is the set of all points x such
that B, is included in X (see Pig. 1). Symboli-
cally,

xOse{x: »,C1) M

pilation of X by B is the set of all points x

such that *hits® X; i.e. bas a non-empty
intersection with X, Symbolically,

x@vein: 3_N x0gh) @)

Pig. 1 shows the erosion and dilation of a set X
by a 4isk B. This figure illustrates that ero~

84 06 18
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sion {s a shrinking operation and dilation is an
expanding operation, Erosion and dilation are
dual operations w.r. to complementation: Broding
X is equivalent to taking the complement of the
ailation of X°. If we erode X by B and then
dilate the set X(9)B by B, we do not recover X.
We reconstitute only a part of X which is simpler
and has less details. It may be considered as
that part which is most essential morphological-~
ly. We call this new set the opening of X w.r.
to B:

rexOn @ 3

The opening is the domain swept out by all the
translates of " which are included in X, This
operation mmooths the ocontours of X, cuts the
narrow isthmuses, suppresses the small islands
and the sharp capes of X.

Although the asbove operations appear super-
ficially simple, we can perform an enormous
variety of imsge processing and image understand-
ing tasks 3just by oombining erosions and
dilations, as is well developed in {1).

The skeleton is & topologically eguivalent
thinned version of the image. It can be cbtained
from morpbological transformations which empba-
size features of the object associated with its
connectivity. In the 2-D continuous spsos it is
defined as follows: let rB, denote the disk of
radivs r centered at the point x. Let s (X)
denote the set of the oenters ©of the disks r
such that: 1) B, is the maximum disk oenter
at x and oconts. in the object X, and 1i) the
disk rB_ intersects the boundary of X at two or
wore dilferent places. Tan, the skeleton $(X)
of X is defined as the set of the centers of the
saximum disks inscribable in X, and is a carica-
ture containing information about the shape, sise
and orientation of X. fSome examples Of skeletons
are showmn in Pig. 2. The skeleton B(X) can be
obtained from the set wnion of s, (X) (Lantuejoul
{21)s

8(X) »Us (X) =0 [(X(=)cB)/X(~)rB) )
0o t>0[ @ @ “.]
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where °®U® ("/°) represents set unjon (d4if-
ference), and 4r is the infinitesimal mmall
zadius.

Although the skeleton is not a well-digite~
lizable notion, Serra (1) gives an algorithm for
the skeleton of digital binary images sampled on
a hexagonal grid.

Our research was focused on three areas:
obtaining algorithms for skeletonizing digital
binary images on a rectangular grid; using parts
of the skeleton to code the image; and extending
the above ideas to grey-tone images.

Lat R denote the unit-sisze square of a rec-
tangular grid (see Pig. 3) which is a sguare of
3x3 pixels, and let nR denote the square R magni-
fied n times which gives a square of (2n+1) x
(2n+1) pixels. Then & digital algorithm for 8(X)
of a rectangularly sampled image object X is

nm n.ll
8(X) =0 s _(x) =0 [xOoR)/&x@ar) ] (5)
=0 ° n=0 @ @ ®

Eg. (5) says that the skeleton subsets ln(x) form
a partition of S(X). Thus, 8(X) is obtained by
successively eroding X by nR, and then keeping
from every eroded set (X (=)nR) those parts only
which consist of angular points and lines without
thickness; these parts are the only ones remain-
ing after the set difference between (X(-)nR) and
its opening X(OnR)y. The maximum sise
indicates the square Of maximum sise after wh

a further erosion erodes X down to the empty set.

Wow, the image X can bo exactly reconstruct-
ed by dilating the subsets of its skeleton by
squares of corresponding sise and taking their
union:

xe0 (s (x)@®on] (6)
n=0

Bgs. (S) and (6) imply that the datum of the
inage (set X) is equivalent to that of its skele~
ton 8(X) together with the sise "n" of the
maximum square associated with each point of
8(X). 1In Pig. 4, proceeding from left to right
columns, we shov an example of an image object X
and its erosions (X (O)nR), the openings of these
erosions, the skeleton subsets s,(X), the dilated
subsets, the ocomposition of the skeleton S(X) as
the union of the skeleton subsets, and fimally
the reconstruction of X as the union of the di-
lated skeleton subsets.

According to Shannon's theory of discrete
source ooding (3] we oonsider the Aigitised
images as sample functions of a 2-D stochastic
process characterised by joint probability die-
tributions of all orders. In practice we measure
histograme instesd of probability distribu-
tions. Consides & 1-D or 2-D bDloock of

consecutive pixels xy,X3,...,%Xy, where x, Can be
either 1 or 0 acoording to whether x, be s to
the image object X or its boekgxooné x€ respec-
tively. Let P(l,plz'co-'l.) be the MNth~order
joint probability of these N pixels., Then the
Nth-order joint entropy (in bits/pixel) of the
binary image is defined as

Iooel Pixgreccixy)

X) = ~(1M) -
" . 21,...,3.

. logzp(x',....x.) (¢)]

As is well known, is a nonincreasing function
of ¥ and the limit as ¥ + & ig the entropy of the
stochastic source. If we consider the ait-
ferent blocks of N pixels each as our messages,
we can employ Buffman coding or other suboptimum
coding procedures [4] to achieve transsission
rates very close to these Nth-order entropies.
Thus, hereafter we will be referring to these
Nth-order joint entropies of binary images as
their achievable transmission rates.

Since every skeleton subset ln(X) is a much
thinner binary image than X, then its Nth-order
entropy, denoted by Hy(s,), will be much lower
than By (X). And there llg'ht be cases where

h [ ]
..Zo B(s) <« E X ()

Thus, to transmit s_(X) we need approximately
E.(s,) bits/pixel. In addition to the sum of all
Be(s)) we need information about * " which
can taken into acoount with the trivial amount
of log,(MN/2) bits, for a binary imsge of Nt
pixels.

When (8) holds, we can transmit all the
skeleton subsets of X independently at a total
rate less than the entropy of the original image,
and fully reconstruct X without error as Bgq. (6)
indicates.

A further reduction in information rate can
be achieved by using not all but only some of the
skeleton subsets to reconstruct openings (smooth-
od versions) of the original image:

X --u.ul:'t [s,(x) ®nn] (9)

That is, if in the wnion of the skeleton subeets
we omit the first k subsets (n=0,1,..,k-1), we
reconstruct the opening of X w.r. to kR, The
larger the k, the fewer subsets we transmit, the
more we reduce the information rate, but the
smoother is the version X that we ceconstruct.
As shown in the example of Pig 4, for Wwi, the
original image X has an entropy of 0.34 bits/pin-
el. If we use all the skeleton subsets we
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reconstruct X perfectly at a rate of approxi-
mately 0.18 bits/pixel. If we desire ¢to
teconstruct only the openings Xp or Xopy we omit
the first one or two skeleton subsets and thus we
need approximately 0.16 or 0.14 bits/pizel re-
spectively. Table ! illustrates that more infor-
natively.

s 1
Bth-Order Entropies (bits/pixel) of a Skeleton
Reconstructed Image and Its Openings.

n 1 2 4 s
Inage
x 0.47  0.22 0,18  0.15
X 0.22 0.9 0.16 0,13
X 0.20  0.17 0.4 0,10
X 0.07  0.06  0.05  0.03

The first-, second-, fourth- and eighth~order
entropies of the original binary image without
skeleton encoding are 0.79, 0.50, 0.34 and 0.23
tespectively. Thus, as shown in Table 1, the sum
of the entropies of all or some of the skeleton
subsets is smaller than the entropies of the
original unencoded image.

SERLETON OF GREY-TOERE DIAGES

In grey-tone Morphology [1] the binary ero~
sions and dilations are replaced by “min" and
*max® operators respectively. Consider a nonne-
gative bounded function £(i,j) representing the
intensity of a sampled grey-tone image. Let
0<2ti,))ma for every integer pair (i,J) in the
image support. All the sero~valued image samples
will belong by convention to the background of
the image object. BRrosion or dilation of the
function £ by the 2-D structuring element R {8
detined [1) as

[t@r),Demin[t(z,0): iz, 0 R (108)

(1-1)]

[t@ )]s, )emax[t(z,8): (£,8) LTI ] o)

where R ) denotes the square R centered at the
pizel (1133)  The opening £, of £ w.r. to R s
defined as an erosion ¢ by dilatiom.

We provide now a digital algorithm for the
skeleton S8(f) of £ which will be the nonnegative
function:

"nax "nax
CEFENCES N (oL SEoLN an

fg. (11) 4is a direct trangposition of Bg. (S5)
where we replaced the binary set union/difference
by an algebraic addition/subtraction. Decause
the opening 4is an anti-extensive operation
(£562), the skeleton subfunctions in the brackets

of (11) will be monnegative functions. Similarly
a8 in Bg. (6) o (9), the function £ oc its
openings can be reconstructed by sumaing alge-
brajcally all o some ©o0f the skeleton
subfunctions s, (f) dilated by nk.

The implications and the coding efficiency
of the skeleton of the image function £ in terms
of entropy considerations are still under inves-
tigation.

The results of this study indicate that a
digital binary image can be uniquely decomposed
into its skeleton and the maximum inscribable
squares, and uniquely reconstructed from its
skeleton. The skeleton provides useful informa-
tion about the shape, sise and orientation of an
image. Por certain categories of images the
total entropy of the skeleton subsets is lower
than the entropy of the original images. Origi-
nal 1 bit/pixel test images of irregularly and
regularly shaped objects were reconstructed with-
out error by thair full skeleton at information
rates of «0,20 bits/pixel. Samcothed versions of
these images required rates of only =0.15
bits/pixel. Pinally, by using min/max operzations
instead of binary erosions/dilations, these idess
can be extended to grey-tone images.

[1) J. Serra, "Image Analysis and Mathematical
Morphology,® Acad. Press, Wew York, 1982.
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{4] T. 8. Huang, "Coding of Two-Tone Images,®
IEEE Trans. on Commun., Vol. CON-25, Wo. 11,
Nov, 1977, pp. 1406-1424.
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Figure 3— The 3 x 3 pixels square R
on a rectangular grid.

Figure 4 — Step by step decomposition and

reconstruction of an image object X by the

components of its skelston S(X) :

{a) size — n — of the structuring square nR

{b) eroded sets ( X(OnR )

{c) openings of the eroded sets (X(OnR )

{(d) skelston subsets 8,(X)

(o) dilated skeleton subsets 3 (X)®nR

(f) sst union of skeleton subsets 3 (X) for
k=7,8,...n1,n

(8) oot union of dilsted subsets s, (X)OKR
for k=7,6,...n1,n, which gives the
opening an

(h)md“m"‘“k,d“
subsets 5, (X), k=7,...n, which are
of the original object X







